Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xian-Mei Shang, ${ }^{\text {a }}$ Xiang-Gao
Meng, ${ }^{\text {b }}$ Ji-Zhou $\mathrm{Wu}^{\text {a }}$ and Qing-Shan Li ${ }^{\mathrm{a}, \mathrm{c}_{*}}$

${ }^{\text {a School of Pharmaceutical Science, Tongji }}$ Medical University, HUST, Wuhan 430030, People's Republic of China, ${ }^{\text {b }}$ Department of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ${ }^{\mathrm{c}}$ School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, People's Republic of China

Correspondence e-mail:
shang430030@yahoo.com

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.056$
$w R$ factor $=0.157$
Data-to-parameter ratio $=7.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,4-Difluorobenzohydroxamic acid

The title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{NO}_{2}$, was prepared by the reaction of methyl 3,4-difluorobenzoate with excess $\mathrm{NH}_{2} \mathrm{OH}$ in basic solution. In the crystal structure, the molecules are linked into a three-dimensional extended network by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen-bond interactions.

Comment

Taking the pharmacological potential of hydroxamic acid derivatives into account (Barbaric et al., 2005), we have synthesized some new types of halo-substituted benzohydroxamic acids. The crystal structure of one of the chlorosubstituted benzohydroxamic acids was reported recently by our group (Shang et al., 2005). Here, we describe the structure of the title fluoro-substituted benzohydroxamic acid, (I).

(I)

The molecular structure of (I) is shown in Fig. 1. The mean deviation from the plane of atoms $\mathrm{O} 2 / \mathrm{N} 1 / \mathrm{O} 1 / \mathrm{C} 7$ is $0.0365 \AA$, and the angle between the mean $\mathrm{O} 2 / \mathrm{N} 1 / \mathrm{O} 1 / \mathrm{C} 7$ and $\mathrm{C} 1 / \mathrm{C} 2 / \mathrm{C} 3 /$ C4/C5/C6 planes is $36.4(1)^{\circ}$.

In the crystal structure, the molecules of (I) are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \quad \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen bonds (Table 1). These two- or threecentre interactions form a three-dimensional extended network, illustrated in Fig. 2.

Figure 1
The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 9 June 2005 Accepted 27 June 2005 Online 6 July 2005

Experimental

Compound (I) was prepared by adding methyl 3,4-difluorobenzoate $(1.72 \mathrm{~g}, 10 \mathrm{mmol})$ to a solution of $\mathrm{NH}_{2} \mathrm{OH}(16 \mathrm{mmol})$ in methanol $(30 \mathrm{ml})$ under N_{2}. The system was stirred at room temperature overnight. Under ice cooling, the pH of the solution was adjusted to ca 7 with concentrated HCl . A white precipitate formed and was filtered off. Single crystals of (I), suitable for X-ray analysis, were obtained by recrystallization of this white precipitate from methanol.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~F}_{2} \mathrm{NO}_{2}$

$M_{r}=173.12$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.9983$ (11) Å
$b=5.5158$ (12) \AA
$c=26.418$ (6) \AA
$V=728.3$ (3) \AA^{3}
$Z=4$
$D_{x}=1.579 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
4166 measured reflections
886 independent reflections
752 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.157$
$S=1.06$
886 reflections
114 parameters
H atoms treated by a mixture of independent and constrained refinement

Mo $K \alpha$ radiation

Cell parameters from 1242 reflections
$\theta=3.8-21.2^{\circ}$
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colourless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.085 \\
& \theta_{\max }=26.0^{\circ} \\
& h=-5 \rightarrow 6 \\
& k=-6 \rightarrow 3 \\
& l=-30 \rightarrow 32
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0879 P)^{2}\right. \\
& \quad+0.2027 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Hydrogen-bond geometry ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\text {i }}$	$0.80(1)$	$2.04(2)$	$2.808(4)$	$161(5)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 \cdots \mathrm{O}^{1 i}$	0.82	1.87	$2.630(4)$	154
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {iii }}$	0.93	2.51	$3.433(5)$	170
$\mathrm{C} 5-\mathrm{H} 5 \cdots 1^{\text {iv }}$	0.93	2.47	$3.391(5)$	172

Symmetry codes: (i) $x-1, y, z$; (ii) $x-\frac{1}{2},-y+\frac{1}{2},-z+2$; (iii) $x-\frac{1}{2},-y+\frac{3}{2},-z+2$; (iv) $x+1, y-1, z$.

The H atoms bonded to the benzene ring and to O 2 were placed in calculated positions and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}(\mathrm{O})$. The H atom associated with atom N 1 was located in a difference map and refined with a restraint of 0.80 (1) \AA. In the absence of significant anomalous dispersion effects, Friedel pairs were merged and the $\delta f^{\prime \prime}$ term set to zero.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve

Figure 2
A packing diagram for compound (I), showing the hydrogen-bond interactions as dashed lines [symmetry codes: (i) $-\frac{1}{2}+x, \frac{1}{2}-y, 2-z$; (ii) $-\frac{1}{2}+x, \frac{3}{2}-y, 2-z$; (iii) $-1+x, y, z$; (iv) $\left.1+x,-1+y, z\right]$.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Programme for New Century Excellent Talents in Chinese Universities and from the Education Commission of Shanxi Province, China.

References

Barbaric, M., Ursic, S., Pilepic, V., Zorc, B., Hergold-Brundic, A., Nagl, A., Grdisa, M., Pavelic, K., Snoeck, R., Andrei, G., Balzarini, J., Clercq, E. D. \& Mintas, M. (2005). J. Med. Chem. 48, 884-887.
Bruker (1997). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.
Shang, X. M., Meng, X. G., Wu, J. Z. \& Li, Q. S. (2005). Acta Cryst. E61, o1961o1962.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

